Abstract

Energy structure and industrial structure are two crucial economic factors affecting carbon emissions. However, current research often examines them separately, neglecting the potential additional synergistic effect between them. Leveraging the coupling concept from physics, we objectively quantify these synergistic effect and investigate influencing factors on CO2 intensity from a novel perspective of the synergy by combining a coupling coordination model with econometric model of generalized method of moments (GMM) with a panel dataset from China spanning 2007 to 2019. Our estimates indicate that (1) synergy of energy and industrial structures significantly reduces carbon intensity, which is stable after a series of robust check. (2) the reduced effect of synergy can be enlarged by enhancing environmental regulation and green innovation. (3) the inhibiting effect of synergy is significant, mainly occurs in regions with abundant energy resource endowments. Correspondingly, we recommend several policy implications for China and other developing countries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call