Abstract

Soil respiration (RS) is crucial for releasing carbon dioxide (CO2) from terrestrial ecosystems to atmosphere. Prescribed burning (a common forest management tool), along with its important by-product pyrogenic carbon (PyC), can influence the carbon cycle of forest soil. However, few studies explore RS and PyC spatial correlation after prescribed burning. In this study, we investigated the spatial pattern of RS and its influencing factors by conducting prescribed burnings in a temperate artificial Pinus koraiensis forest. RS was measured 1 day (1 d) pre-prescribed burning, 1 d, 1 year (1 yr) and two years (2 yr) after prescribed burning. Significant decrease in RS were observed 1–2 yr After burning (reductions of 65.2% and 41.7% respectively). The spatial autocorrelation range of RS decreased pre-burning (2.72m), then increased post-burning (1 d: 2.44m; 1 yr: 40.14m; 2 yr: 9.8m), indicating a more homogeneous distribution of patch reduction. Pyrogenic carbon (PyC) in the soil gradually decreased in the short term after burning with reductions of 19%, 52%, and 49% (1d., 1 yr And 2 yr After the fire, respectively). However, PyC and RS exhibited a strong spatial positive correlation from 1 d.- 1 yr post-burning. The spatial regression model of dissolved organic carbon (DOC) on RS demonstrated significant positive spatial correlation in all measurements (pre- and post-burning). Microbial carbon to soil nitrogen ratio (MCN) notably influenced RS pre-burning and 1–2 yr post-burning. RS also showed significant spatial correlation in cross-variance with NH4+-N and NO3−-N post-burning. The renewal of the PyC positively influenced RS, subsequently affecting its spatial distribution in 1d.- 1yr. Introducing PyC into RS studies helps enhances understanding of prescribed fire effects on forest soil carbon (C) pools, and provides valuable information regarding regional or ecosystem C cycling, facilitating a more accurate prediction of post-burning changes in forest soil C pools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.