Abstract

A novel Cu catalyst was developed using water-washed coal fly ash (WFA) as a support material for catalytic reduction of p-nitrophenol (p-NP) in the presence of NaBH4. Cu/WFA showed ~ × 105 times higher estimated rate constant kobs-p-NP/CCu (L min−1 gCu−1) compared with Cu/SiO2, Cu/Al2O3, and other Cu catalysts previously reported. Surprisingly, we obtained a significant lower price value (Price’/K) (0.027–0.068 USD/L min−1) for Cu/WFA in comparison with other Cu catalysts and precious metallic catalysts (Pd, Au, Ag, and Pt). Various surface analyses and additional experiments using Fe/SiO2, Cu/Fe2O3/SiO2, and Cu/HCl-treated WFA demonstrated that Cu(0) nanoparticles were well loaded on the surface of WFA, where Fe elements were abundant, resulting in a dramatic enhancement of the Cu/WFA catalytic activity. Particularly, X-ray photoelectron spectroscopy revealed the abundance of Cu(0)/Fe(III) and Cu(0)/Fe(II) in the WFA surface. This indicates that Cu(0) was the main driving force for the activation of Had molecule, and that the reduction of Fe(III) to Fe(II) by NaBH4 can accelerate the reduction of Cu(II) to Cu(0). Recycling and phytotoxicity tests showed that Cu/WFA can be applied as a reusable catalyst with low environmental impact, revealing the remarkable potential of non-precious metal/WFA catalyst in the field of environmental remediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.