Abstract

Mixed-cation hybrid perovskite nanocrystal (HPNC) with high crystallinity, color purity, and tunable optical bandgap offers a practical pathway toward next-generationdisplays. Herein, a two-step modified hot-injection combined with cation compositional engineering and surface treatment to synthesize high-purity cesium/formamidinium lead bromide HPNCs(Cs1-x FAx PbBr3 ) is presented. The optimized Cs0.5 FA0.5 PbBr3 light-emitting devices (LEDs) exhibit uniform luminescence of 3500cd m-2 and a prominent current efficiency of 21.5cd A-1 . As a proof of concept, a self-healing polymer (SHP) integrated with white LED backlight and laser prototypes exhibited 4 h autonomous self-healing through the synergistic effect of weak reversible imine bonds and stronger H-bonds. First, the SHP-HPNCs-initial and SHP-HPNCs-cut possess high long-term stability and dramatically suppressed lead leakage as low as 0.6ppm along with a low leakage rate of 1.11 × 10-5 cm2 and 3.36 × 10-5 cm2 even over 6 months in water. Second, the Cs0.5 FA0.5 PbBr3 HPNCs and SHP-induced shattered-repaired perovskite glass substrate show the lowest lasing threshold values of 1.24 and 8.58 µJ cm-2 , respectively. This work provides an integrative and in-depth approach to exploiting SHP with intrinsic and entropic self-healing capabilities combined with HPNCs to develop robust and reliable soft-electronic backlight and laser applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call