Abstract

The development of superconducting materials has attracted significant attention not only for their improved performance, such as high transition temperature (TC), but also for the exploration of their underlying physical mechanisms. Recently, considerable efforts have been focused on interfaces of materials, a distinct category capable of inducing superconductivity at non-superconducting material interfaces or augmenting the TC at the interface between a superconducting material and a non-superconducting material. Here, two distinct types of interfaces along with their unique characteristics are reviewed: interfacial superconductivity and interface-enhanced superconductivity, with a focus on the crucial factors and potential mechanisms responsible for enhancing superconducting performance. A series of materials systems is discussed, encompassing both historical developments and recent progress from the perspectives of technical innovations and the exploration of new material classes. The overarching goal is to illuminate pathways toward achieving high TC, expanding the potential of superconducting parameters across interfaces, and propelling superconductivity research toward practical, high-temperature applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.