Abstract

Nanomaterials play a beneficial role in enhancing the rheological behavior of fracturing (frac) fluid by reacting with intermolecular structures. The inclusion of these materials into the fluid improves its stability, increases the viscosity of polymers, and enhances its resistance to high temperature and pressure. In this investigation, multi-walled carbon nanotubes (CNTs), nano-zinc oxides (N-ZnO), and nano-copper oxides (N-CuO) have been utilized to ameliorate the rheological properties of water-based fracturing fluid. Different concentrations of these aforementioned nanomaterials were prepared to determine their effects on the rheological behavior of the fluid. The results revealed that the size of nanoparticles ranged from 10 to 500 nm, 300 nm, and 295 nm for CNTs, N-ZnO, and N-CuO, respectively. Moreover, employing CNTs exhibited a resistance of 550 cp at 25 °C and reached 360 cp at 50 °C with a CNT concentration of 0.5 g/L. In contrast, N-CuO and N-ZnO showed a resistance of 206 cp at 25 °C and significantly decreased to 17 cp and 16 cp with higher concentrations of 10 g/L and 1 g/L, respectively. Based on these findings, this study recommends utilizing CNTs to enhance fracking fluid’s chemical and physical properties, which need to be highly viscous and stable under reservoir conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.