Abstract

Various aspects such as development, experimentation, and analysis have been covered in the present work to examine the behavior of test coatings under slurry erosion. The primary objective of the present study was to establish the specific mass loss from the test coatings under various slurry environmental conditions and highlights the importance of the addition of alumina in improving the slurry erosion resistance of Ni-TiO2 coating. To attain this objective, two powder compositions, viz. Ni-20TiO2 and Ni-15TiO2-5Al2O3 were deposited onto the CA6NM grade hydro-turbine steel using high velocity frame spray process. The microstructural characterization of the coatings was done by employing surface roughness tester, scanning electron microscope/energy-dispersive X-ray spectroscopy, and X-ray diffraction techniques, whereas mechanical analysis was carried out using micro-hardness and bond strength tester. The slurry erosion tests were performed using an indigenously fabricated high speed slurry erosion test rig at different levels of rotational speed, average particle size of erodent, and slurry concentration in order to explore their effects on slurry erosion performance of test coatings. The slurry erosion results, as well as scanning electron microscope observations of eroded specimens, revealed higher slurry erosion resistance of Ni-15TiO2-5Al2O3 coating in comparison with Ni-20TiO2 coating. Furthermore, each operational parameter was found to have a proportional effect on specific mass loss in case of both the coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call