Abstract

The objective of this study was to investigate the percutaneous absorption of metronidazole (MTZ) in the topical formulations containing a combination of 1,4-cyclohexanediol and 1,2-hexanediol. Six formulations were studied in an in vitro hairless mouse skin model using Franz Diffusion Cell. MTZ was applied at infinite doses (50 mg and 100 mg of the formulations, which correspond to 375 and 750 μg of MTZ, respectively). Based on the flux values and retardation ratio (RR), a synergistic retardation effect on percutaneous absorption of MTZ was observed for the formulations containing a combination of 1,4-cyclohexanediol and 1,2-hexanediol (RRs are 0.40 for 375 μg dose and 0.69 for 750 μg dose, respectively). Interestingly, retention of MTZ in epidermis and dermis layer showed no significant differences ( p > 0.05) between the formulations containing the retardant combination and control formulations. In other words, the retardant combination in the formulation decreases MTZ fluxes while maintaining similar level of retention in epidermis and dermis layer when compared to the control formulations. These observations provide insight in formulating superior topical formulations with minimized potential systematic toxicity while maintaining therapeutic efficiency. A mechanistic explanation of the observed synergistic effect is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.