Abstract

T-shaped partial least squares regression (T-PLSR) is a valuable machine learning technique for the formulation and manufacturing process development of new drug products. An accurate T-PLSR model requires experimental data with multiple formulations and process conditions. However, it is usually challenging to collect comprehensive experimental data using large-scale manufacturing equipment because of the cost, time, and large consumption of raw materials. This study proposes a hybrid modeling of T-PLSR and transfer learning (TL) to enhance the prediction performance of a T-PLSR model for large-scale manufacturing data by exploiting a large amount of small-scale manufacturing data for model building. The proposed method of T-PLSR+TL was applied to a practical case study focusing on scaling up the tableting process from an experienced compaction simulator to a less-experienced rotary tablet press. The T-PLSR+TL models achieved significantly better prediction performance for tablet quality attributes of new drug products than T-PLSR models without using large-scale manufacturing data with new drug products. The results demonstrated that T-PLSR+TL is more capable of addressing new drug products than T-PLSR by using small-scale manufacturing data to cover a scarcity of large-scale manufacturing data. Furthermore, T-PLSR+TL holds the potential to streamline formulation and manufacturing process development activities for new drug products using an extensive database.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.