Abstract

Multi-scale toughening is a key strategy employed by biological systems, made of intrinsically brittle constituents, to achieve high damage tolerance. This paper presents an investigation of the synergistic enhancements to the mode I interlaminar fracture toughness of fibre-polymer composite laminates using multi-scale carbon reinforcements. By combining carbon nanofibres (CNFs) dispersed in the matrix and z-pins in the laminate thickness at various contents, an extra mechanism of energy dissipation occurs. This additional mechanism synergistically improves the laminate's resistance to delamination growth under mode I loading. Addition of the nanofibres in the matrix increases the interfacial strength and frictional energy dissipation during z-pin pull-out, thus generating a greater-than-additive toughening effect that would not have existed should either the nanofibres or the z-pins been deployed alone. The results reveal that the magnitude of the synergistic toughening effect was dependent on the volume fraction and combinations of CNFs and z-pins used; where synergy values ranged between 24 and 69% over the expected additive toughness value. A numerical model was developed to successfully predict the crack growth resistance and the synergistic toughening effect with filler content of the multi-scale composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.