Abstract
Coassembly of molecules can produce materials with improved properties and functionalities. To this end, achieving a molecular level understanding of the interactions governing the coassembly is essential. In this work, two molecular gelators with significantly different structures and main intermolecular forces for assembly were coassembled. The elastic moduli of the hybrid gels are more than 1 order of magnitude higher than those of the gels formed by the individual gelators, showing an obvious synergistic effect. The interactions between the gelators were investigated with confocal microscopy and both one-dimensional and two-dimensional nuclear magnetic resonance. It was found that the two gelators coassemble to form fibers due to the nonspecific van der Waals interactions between their alkyl chains and the specific interactions between their functional groups. Switching from one gelator-dominated fiber network to the other gelator-dominated fiber network was achieved at a critical molar ratio of the gelators. The two gelators serve as additives of each other to tune the nucleation and growth of the fiber networks. The observations of this work are significant to the development of materials with improved properties by coassembly of different molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.