Abstract

The importance of honey adulteration detection has recently increased owing to the limited production levels in recent years and the relative high price of honey; therefore, this illegal practice has become more and more attractive to producers. Hence, the need has arisen for more effective analytical methods aiming at detecting honey adulteration. The present research presents an effective method to detect adulteration in honey falsified by intentional addition of different concentrations of commercial sugar syrups, using one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) coupled with multivariate statistical analysis. Sixty-three authentic and 63 adulterated honey samples were analyzed. To prepare adulterated honeys, seven different sugar syrups normally used for nutrition of bees were used. The best discriminant model was obtained by 1D spectra, and leave-one-out cross-validation showed a predictive capacity of 95.2%. 2D NMR also furnished acceptable results (cross-validation correct classification 90.5%), although the (1)H NMR sequence is preferable because it is the simplest and fastest NMR technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.