Abstract

The miscellaneous volatile organic compounds (VOCs) in industrial flue gas streams usually demonstrate significant mutual inhibition effects, and the behavior of a particular VOC in mixtures is not clear, which hinders the application of catalytic technology. This study examines the catalytic oxidation and mixing effects of representative VOCs in industrial exhausts, consisting of acetone (AC), ethyl acetate (EA), and toluene (Tol), on common Mn-based catalysts (e.g., MnO2, Mn2O3, LaMnO3, and Mn3O4) by means of intrinsic activity evaluation, coadsorption, VOC temperature-programmed oxidation, in situ diffuse reflectance infrared Fourier transform spectroscopy, and gas chromatography-mass spectrometry. The results showed no inhibiting effect on the conversion of these VOCs when combusted together; instead, a significant mutual promotion effect was found, especially on Tol destruction, with a sharp decrease in the Tol T50 from 214 to 158 °C on MnO2. It is proposed for the first time that the addition of AC/EA in Tol combustion leads to the generation of o/m-methyl phenol, which changes the rate-determining step of the ring-opening process, thus elevating the conversion of Tol together with AC and EA in the mixture at low temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.