Abstract

Reaction behaviors and kinetics of catalytic oxidation of benzene, toluene, and ethyl acetate with feed concentrations in the range of 700-5,000 ppm over Pd/ZSM-5 catalyst were investigated. Results for single components show that ethyl acetate (T (50) = 190-200A degrees C) is more easily oxidized than benzene (T (50) = 215-225A degrees C) and toluene (T (50) = 225-235A degrees C). The conversion of ethyl acetate was increased with the increase of its feeding concentration, while the opposite behaviors were observed for benzene and toluene as their conversion rates were decreased with the increase of the inlet concentration. Different behaviors were observed in catalytic oxidation of volatile organic compound (VOC) multi-components, the presence of benzene or toluene inhibits the conversion of ethyl acetate, and the aromatic hydrocarbons inhibit each other in all cases. Ethyl acetate possesses obvious inhibitory effect on benzene oxidation, while it is interesting to note that ethyl acetate has a promotion effect on toluene conversion. The kinetic data were fitted by the Power-law and Mars-van Krevelen kinetic models. The fitting result shows that the Power-law model is more suitable for predicting the conversion of benzene than the other VOCs, and the Mars-van Krevelen model can accurately express the reaction rate of all investigated VOCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call