Abstract

A convenient strategy for synthesis of the various derivatives of 1,4-dihydropyridine (1,4-DHP), as one of the most important pharmaceutical compounds, is presented in this study. For this purpose, firstly, magnetic iron oxide nanoparticles (Fe3O4 NPs) were fabricated and suitably coated by silica network (SiO2) and trimethoxy vinylsilane (TMVS). Then, their surfaces were well functionalized with pyrimidine-2,4-diamine (PDA) as the main active sites for catalyzing the synthesis reactions. In this regard, the performance of three different methods including reflux, microwave (MW) and ultrasound wave (USW) irradiations have been comparatively monitored via studying various analyses on the fabricated nanocatalyst (Fe3O4/SiO2-PDA). Concisely, high efficiency of the USW irradiation (in an ultrasound cleaning bath with a frequency of 50 kHz and power of 250 W/L) has been well proven through the investigation of the main factors such as excellent surface-functionalization, core/shell structure conservation, particle uniformity, close size distribution of the particles, and great inhibition of the particle aggregation. Then, the effectiveness of the USW irradiation as a promising co-catalyst agent has been clearly demonstrated in the 1,4-DHP synthesis reactions. It has been concluded that the USW could provide more appropriate conditions for activation of the catalytic sites of Fe3O4/SiO2-PDA NPs. However, high reaction yields (89%) have been obtained in the short reaction times (10 min) due to the substantial synergistic effect between the presented nanocatalyst and USW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.