Abstract

The continual rise in the consumption of petroleum-based synthetic polymers raised a significant environmental concern. Bacillus pseudomycoides SAS-B1 is a gram-positive rod-shaped halophilic bacterium capable of accumulating Polyhydroxybutyrate (PHB)-an intracellular biodegradable polymer. In the present study, the optimal conditions for cell cultivation in the seed media were developed. The optimal factors included a preservation age of 14 to 21 days (with 105 to 106 cells/mL), inoculum size of 0.1 % (w/v), 1 % (w/v) glucose, and growth temperature of 30 °C. The cells were then cultivated in a two-stage fermentation process utilizing glycerol and Corn Steep Liquor (CSL) as carbon and nitrogen sources, respectively. PHB yield was effectively increased from 2.01 to 9.21 g/L through intermittent feeding of glycerol and CSL, along with acrylic acid. FTIR, TGA, DSC, and XRD characterization studies were employed to enumerate the recovered PHB and determine its physicochemical properties. Additionally, the study assessed the cradle-to-gate Life Cycle Assessment (LCA) of PHB production, considering net CO2 generation and covering all major environmental impact categories. The production of 1000 kg of PHB resulted in lower stratospheric ozone depletion and comparatively reduced carbon dioxide emissions (2022.7 kg CO2 eq.) and terrestrial ecotoxicity (9.54 kg 1,4-DCB eq.) than typical petrochemical polymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call