Abstract

The development of flexible pressure sensors for monitoring human motion and physiological signals has attracted extensive scientific research. However, achieving low monitoring limits, a wide detection range, large bending stresses, and excellent mechanical stability simultaneously remains a serious challenge. With the aim of developing a high-performance capacitive pressure sensor (CPS), this paper introduces the successful preparation of a single-walled carbon nanotube (SWNT)/polydimethylsiloxane (S-PDMS) composite dielectric with a foam-like structure (high permittivity and low elasticity modulus) and MXene/SWNT (S-MXene) composite film electrodes with a micro-crumpled structure. The above structurally modified CPS (SMCPS) demonstrated an excellent response output during pressure loading, achieving a wide pressure detection range (up to 700 kPa), a low detection limit (16.55 Pa), fast response/recovery characteristics (48/60 ms), enhanced sensitivity across a wide pressure range, long-term stability under repeated heavy loading and unloading (40 kPa, >2000 cycles), and reliable performance under various temperature and humidity conditions. The SMCPS demonstrated a precise and stable capacitive response in monitoring subtle physiological signals and detecting motion, owing to its unique electrode structure. The flexible device was integrated with an Internet of Things module to create a smart glove system that enables real-time tracking of dynamic gestures. This system demonstrates exceptional performance in gesture recognition and prediction with artificial intelligence analysis, highlighting the potential of the SMCPS in human-machine interface applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.