Abstract

BackgroundRNA interference (RNAi) has emerged as an efficient tool to control insect pests. When insects ingest double-stranded RNAs (dsRNAs) targeted against essential genes, strong gene silencing and mortality can be induced. To exert their function, dsRNA molecules must pass through the insect’s gut and enter epithelial cells and/or the hemolymph. Gut bacteria are known to play multifarious roles in food digestion and nutrition, and confer protection against pathogens and parasites. Whether there is a cross talk between gut bacteria and ingested dsRNAs and whether the microbiome affects RNAi efficiency are unknown.ResultsHere, using a leaf beetle gut microbiota system, we investigated whether gut bacteria interact with dsRNA molecules and how the gut microbiota affects RNAi responses in insects. We first showed that the leaf beetle Plagiodera versicolora (Coleoptera) is highly susceptible to RNAi. We then demonstrated that ingestion of dsRNAs by non-axenic P. versicolora larvae results in (i) significantly accelerated mortality compared with axenic larvae, and (ii) overgrowth and dysbiosis of the gut microbiota. The latter may be caused by bacterial utilization of dsRNA degradation products. Furthermore, we found that Pseudomonas putida, a gut bacterium of P. versicolora, acts as major accelerator of the death of P. versicolora larvae by transitioning from commensal to pathogenic lifestyle.ConclusionsThe present study illuminates the complex interplay between lethal dsRNA, the insect host, and its gut microbiota. The ingestion of dsRNA by the leaf beetle caused a dysbiosis of gut bacterial community, and the dsRNA degradation products by host insect preferentially promoted the growth of an entomopathogenic bacterium, which accelerated dsRNA lethality to the insect. Our findings reveal a synergistic role of the gut microbiota in dsRNA-induced mortality of pest insects, and provide new insights in the mechanisms of RNAi-based pest control.8muhHv3_-7zzU2wL3D8t9_Video abstract

Highlights

  • IntroductionWhen insects ingest double-stranded RNAs (dsRNAs) targeted against essential genes, strong gene silencing and mortality can be induced

  • RNA interference (RNAi) has emerged as an efficient tool to control insect pests

  • Gut microbiota accelerate double-stranded RNAs (dsRNAs)-induced mortality of P. versicolora larvae We first wanted to examine the sensitivity of P. versicolora to RNAi and identify essential genes that represent suitable targets for RNAi-mediated pest control [32, 33]

Read more

Summary

Introduction

When insects ingest double-stranded RNAs (dsRNAs) targeted against essential genes, strong gene silencing and mortality can be induced. To exert their function, dsRNA molecules must pass through the insect’s gut and enter epithelial cells and/ or the hemolymph. RNAi-based pest control is, recognized as a promising approach to develop new target-specific pesticides. Coleopteran insects, such as the red flour beetle (Tribolium castaneum), the western corn rootworm (Diabrotica virgifera virgifera), and the Colorado potato beetle (Leptinotarsa decemlineata) are highly susceptible to RNAi and can be efficiently killed, if lethal dsRNAs are orally delivered. The complex network of molecular interactions underpinning the dsRNA-mediated killing mechanisms has received limited attention

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call