Abstract

Histidyl dipeptides such as carnosine (β-alanyl-L-histidine) and homocarnosine (γ-amino-butyryl-L-histidine) are reported at millimolar concentrations in several mammalian tissues (O'Dowd et al., 1988; House et al., 1989), but their precise physiological function, or functions, is uncertain. These compounds are known to be potent buffers at physiological pH (Davey, 1960). They are also able to restore functional capacity to fatigued muscle preparations, stimulate some glycolytic enzymes and maintain coupling between mitochondrial oxidation and phosphorylation (Severin, 1964). Histidyl dipeptides may also have antioxidant activity, though this finding is controversial. For example, Aruoma et al. have argued that these compounds, individually, are unable to scavenge superoxide (O 2 −·), hydrogen peroxide (H 2O 2) or hypochlorous acid (HOCI) at rates which could offer antioxidant protection in vivo. Since there is a range of these histidyl dipeptides within mammalian tissue we have investigated possible synergism between them in respect of antioxidant activity. Our results show that combining histidine-containing compounds at near physiological concentrations results in synergistic antioxidant activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call