Abstract

Energy- and time-consuming concentration steps currently limit the industrial application of microalgae. Compared to state-of-the-art technologies, magnetic separation shows a high potential for efficient harvesting of microalgae. This study presents a novel approach to combine pH-induced calcium phosphate precipitation with cheap natural magnetite microparticles for magnetic separation of the freshwater microalgae Chlorella vulgaris. Harvesting efficiencies up to 98% were achieved at moderate pH and low particle and calcium phosphate concentrations in a model medium. However, cultivation-dependent high loads of algogenic organic matter can severely inhibit flocculation and particle/algae interactions, requiring higher salt concentrations or pH. Harvesting efficiencies above 90% were still attainable at moderate pH with increased calcium phosphate concentrations of 10mM. Acidification of the suspension to pH 5 allows for simple and reversible particle recycling. The presented process provides a promising path to universal and cost-effective harvesting, advancing the utilization of microalgae as a sustainable bioresource.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call