Abstract

The ESR signal of NO bound to hemoglobin was detected during the ischemia-reperfusion of myocardium with low temperature ESR technique, and the synergic effects of NO and oxygen free radicals in the injury of the process were studied with this technique. Oxygen free radicals and NO bound to beta-subunit of hemoglobin (beta-NO complex) could be detected simultaneously in the ischemia-reperfused myocardium. Those signals could not be detected from the normal myocardium even in the presence of L-arginine. However, those signals could be detected and were dose-dependent with L-arginine in the ischemia-reperfused myocardiums and the signal could be suppressed with the inhibitor of NO synthetase, NG-nitro-L-arginine methylester (NAME). Measurement of the activities of lactate dehydrogenase (LDH) and creatine kinase (CK) in the coronary artery effluent of ischemia-reperfused heart showed that L-arginine at lower concentration (< 1 mmol/L) could protect the heart form the ischemia-reperfusion injury but at higher concentration aggravate the injury. Addition of NAME to the reperfusion solution could also protect the myocardium. Addition of xanthine (X)/xanthine oxidase (XO) or Fe2+/H2O2 to the reperfusion solution increased the production of NO and oxygen free radicals and the ischemia-reperfused injury simultaneously. Addition of superoxide dismutase (SOD) and catalase decreased the production of NO and oxygen free radicals and the ischemia-reperfusion injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.