Abstract

Animal production systems convert plant protein into animal protein. Depending on animal species, ration and management, between 5% and 45 % of the nitrogen (N) in plant protein is converted to and deposited in animal protein. The other 55%-95% is excreted via urine and feces, and can be used as nutrient source for plant (= often animal feed) production. The estimated global amount of N voided by animals ranges between 80 and 130 Tg N per year, and is as large as or larger than the global annual N fertilizer consumption. Cattle (60%), sheep (12%) and pigs (6%) have the largest share in animal manure N production. The conversion of plant N into animal N is on average more efficient in poultry and pork production than in dairy production, which is higher than in beef and sheep production. However, differences within a type of animal production system can be as large as differences between types of animal production systems, due to large effects of the genetic potential of animals, animal feed and management. The management of animals and animal feed, together with the genetic potential of the animals, are key factors to a high efficiency of conversion of plant protein into animal protein. The efficiency of the conversion of N from animal manure, following application to land, into plant protein ranges between 0 and 60%, while the estimated global mean is about 15%. The other 40%-100% is lost to the wider environment via NH(3) volatilization, denitrification, leaching and run-off in pastures or during storage and/or following application of the animal manure to land. On a global scale, only 40%-50% of the amount of N voided is collected in barns, stables and paddocks, and only half of this amount is recycled to crop land. The N losses from animal manure collected in barns, stables and paddocks depend on the animal manure management system. Relative large losses occur in confined animal feeding operations, as these often lack the land base to utilize the N from animal manure effectively. Losses will be relatively low when all manure are collected rapidly in water-tight and covered basins, and when they are subsequently applied to the land in proper amounts and at the proper time, and using the proper method (low-emission techniques). There is opportunity for improving the N conversion in animal production systems by improving the genetic production potential of the herd, the composition of the animal feed, and the management of the animal manure. Coupling of crop and animal production systems, at least at a regional scale, is one way to high N use efficiency in the whole system. Clustering of confined animal production systems with other intensive agricultural production systems on the basis of concepts from industrial ecology with manure processing is another possible way to improve N use efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call