Abstract
Wetting has an essential pertinence to surface applications. The exemplary water-repelling and self-cleaning surfaces in nature have stimulated considerable scientific exploration, given their practical leverage in cleaning window glasses, painted surfaces, fabrics, and solar cells. Here, we explored the three-tier hierarchical surface structure of the Trifolium leaf with distinguished self-cleaning characteristics. The leaf remains fresh, withstands adverse weather, thrives throughout the year, and self-cleans itself against mud or dust. Self-cleaning features are attributed to a three-tier hierarchical synergetic design. The leaf surface is explicated by an optical microscope, a scanning electron microscope, a three-dimensional profilometer, and a water contact angle measuring device. Hierarchical base roughness (i.e., nano-/microscale) comprises a fascinating arrangement, which imparts a superhydrophobic feature to the surface. As a result, the contaminants present on the leaf surface are washed with rolling water droplets. We noticed that self-cleaning is a function of impacting or rolling droplets, and the rolling mechanism is identified as efficient. The self-cleaning phenomenon is studied for contaminations of variable sizes, shapes, and compositions. The contaminations are supplied in both dry and aqueous mixtures. Furthermore, we examined the self-cleaning effect of the Trifolium leaf surface by atmospheric water harvesting. The captured water drops fuse, roll, descend, and wash away the contaminating particles. The diversity of contaminants investigated makes this study applicable to different environmental conditions. And, along with other parallel technologies, this investigation could be useful for crafting sustainable self-cleaning surfaces for regions with acute water scarcity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have