Abstract

The photocatalytic reduction of toxic Cr(VI), to green Cr(III) by visible light, is highly required. Metal-organic frameworks have been waged more and more devotion in the field of environmental remediation. Diversification along with functionalization is still thought-provoking and crucial for the progress of metal-organic framework (MOF)-based high activity materials. Herein, a succession of UiO-66-NH2@ZnIn2S4 composites with varying amount of UiO-66-NH2 is prepared by the facile solvothermal technique. Synergetic effect for Cr(VI) reduction is assessed under the influence of visible light (λ > 420 nm). UiO-66-NH2 octahedron is detained by ZnIn2S4 nanoflakes. The obvious enhancement in activity is observed which is credited to the well-suited energy band construction and close interaction between the interface of ZnIn2S4 and UiO-66-NH2, which leads to effective transfer and separation of photogenerated carriers. Synergistic effect could be evidently understood from the PL and UV -spectroscopy, after molding into heterostructure of UiO-66-NH2@ZnIn2S4. In addition, UiO-66-NH2@ZnIn2S4 composites exhibited good stability in photocatalytic reduction. Consequently, this UiO-66-NH2 constructed composite has high potential in the field of environmental remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call