Abstract

High-entropy alloys (HEA) have been receiving increased attention for their excellent mechanical properties. Our recent study revealed that Si-doped face-centered cubic (FCC) HEAs have great potential to improve both strength and ductility. Here, we carried out first-principles calculations in cooperation with Monte Carlo simulation and structural factor analysis to explore the effect of Si addition on the macroscopic mechanical properties. As a result, Si addition increased the local lattice distortion and the stacking fault energy (SFE). Furthermore, the short-range order formation in Si-doped alloy caused highly fluctuated SFE. Thus, the heterogeneous solid solution states in which low and high stacking fault regions are distributed into the matrix were nucleated. This unique feature in Si-doped FCC-HEA induces ultrafine twin formation in Si-doped alloys, which can be a dominant factor in improving both strength and ductility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.