Abstract

Abstract Helium bubbles can form in materials upon exposure to irradiation. It is well known that the presence of helium bubbles can cause changes in the mechanical behavior of materials. To improve the lifetime of nuclear components, it is important to understand deformation mechanisms in helium-containing materials. In this work, we investigate the interactions between edge dislocations and helium bubbles in copper using molecular dynamics (MD) simulations. We focus on the effect of helium bubble pressure (equivalently, the helium-to-vacancy ratio) on the obstacle strength of helium bubbles and their interaction with dislocations. Our simulations predict significant differences in the interaction mechanisms as a function of helium bubble pressure. Specifically, bubbles with high internal pressure are found to exhibit weaker obstacle strength as compared to low-pressure bubbles of the same size due to the formation of super-jogs in the dislocation.
Activation energies and rate constants extracted from the MD data confirm this transition in mechanism and enable upscaling of these phenomena to higher length-scale models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.