Abstract

Extracellular polymeric substance (EPS) with highly hydrophilic groups and sludge with high compressibility are determined sludge dewaterability. Herein, Fe2+ catalyzed calcium peroxide (CaO2) assisted by oxalic acid (OA) Fenton-like process combined with coal slime was applied to improve sludge dewaterability. Results demonstrated that the sludge treated by 0.45/1/1.1-OA/Fe2+/CaO2 mM/g DS, the water content (WC), specific resistance to filtration and capillary suction time dropped to 53.01%, 24.3 s and 1.2 × 1012 m/kg, respectively. Under coal slime ratio as 0.6, WC and compressibility were further reduced to 42.72% and 0.66, respectively. The hydroxyl radicals generated by OA/Fe2+/CaO2 under near-neutral pH layer by layer collapsed EPS, resulting in the degradation and migration of inner releasing components and the exposure of inner sludge flocs skeleton. The hydrophilic tryptophan-like protein of TB-EPS were degraded into aromatic protein of S-EPS and exposed inner hydrophobic sites. The protein secondary structures were transformed by destroying hydrophilic functional groups, which were attributed to the reducing α-helix ratio and reconstructing β-sheet. Moreover, coal slime as the skeleton builder lowered compressibility and formed more macropores to increase the filterability of pre-oxidized sludge for the higher intensity of rigid substances. This study deepened the understanding of OA enhanced Fenton-like system effects on sludge dewaterability and proposed a cost-effective and synergistic waste treatment strategy in sludge dewatering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call