Abstract

Synectin (GIPC1), a receptor scaffold protein, has been isolated by our laboratory as a syndecan-4 cytoplasmic domain binding partner that regulates important aspects of cell motility (Gao Y, Li M, Chen W, Simons M. J Cell Physiol 184: 373-379, 2000; Tkachenko E, Elfenbein A, Tirziu D, Simons M. Circ Res 98: 1398-1404, 2006). Moreover, synectin plays a major role in arterial morphogenesis and in growth factor signaling in arterial endothelial cells by regulating Rac1 activity (Chittenden TW, Claes F, Lanahan AA, Autiero M, Palac RT, Tkachenko EV, Elfenbein A, Ruiz de Almodovar C, Dedkov E, Tomanek R, Li W, Westmore M, Singh J, Horowitz A, Mulligan-Kehoe MJ, Moodie KL, Zhuang ZW, Carmeliet P, Simons M. Dev Cell 10: 783-795, 2006). The present study was carried out to characterize changes in synectin-dependent gene expression induced by homozygous disruption of the gene in endothelial cells. Using a combination of suppression subtraction hybridization and high throughput microarray technology, we have identified aberrant biological processes of transcriptional regulation in synectin(-/-) primary endothelial cells including abnormal basal regulation of genes associated with development, cell organization and biogenesis, intracellular tracking, and cell adhesion. Analysis of gene expression following FGF2 treatment demonstrated significant abnormalities in transcription, cytoskeletal organization and biogenesis, and protein modification and transport in synectin(-/-) compared with synectin(+/+) endothelial cells. These results confirm synectin involvement in FGF2-dependent signal transduction and provide insights into synectin-dependent gene expression in the endothelium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.