Abstract
C1 symmetric group 4 ansa-metallocenes [Me2C(Cp)(3-CH2X-2-R-Ind)MCl2 (M = Zr, R = H, X = Me (3); M = Zr, R = H, X = SiMe3 (4); M = Zr, R = Me, X = SiMe3 (5); M = Hf, R = H, X = SiMe3 (6); M = Hf, R = Me, X = SiMe3 (7); Cp = cyclopentadienyl, Ind = indenyl), upon activation with methylaluminoxane (MAO), catalyze the polymerization of propylene to predominantly syndiotactic polypropylene. The preparations of complexes 3−7 and the molecular structures of 3 and 4 are reported. The polypropylenes produced have [rrrr] pentad contents ranging from 43 to 75% depending on the employed transition metal, ligand substitution pattern, and polymerization conditions. The 2-Me-substituted catalysts 5/MAO and 7/MAO exhibit higher activities and higher stereospecificities than their unsubstituted analogues 4/MAO and 6/MAO. Stereoselectivities of the zirconium catalysts 3−5/MAO are sensitive to the monomer concentration, showing decreasing syndiotacticities with decreasing propylene pressure due to increasing amount of skipped insertions. The dependence of the stereospecificity and polymerization activity on the ligand structure suggests that the conformation of the 3-(trimethylsilyl)methyl substituent can be perturbed by introduction of a 2-substituent, thus providing a tool to control the stereoerror formation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.