Abstract

The effects of polymerization conditions were evaluated on the production of polyethylene by silica-supported (n-BuCp)2ZrCl2 grafted under optimized conditions and cocatalyzed by methylaluminoxane (MAO). The Al : Zr molar ratio, reaction temperature, monomer pressure, and the age and concentration of the catalyst were systematically varied. Most reactions were performed in toluene. Hexane, with the addition of triisobutilaluminum (TIBA) to MAO, was also tested as a polymerization solvent for both homogeneous and heterogeneous catalyst systems. Polymerization reactions in hexane showed their highest activities with MAO : TIBA ratios of 3 : 1 and 1 : 1 for the homogeneous and supported systems, respectively. Catalyst activity increased continuously as Al : Zr molar ratios increased from 0 to 2000, and remained constant up to 5000. The highest activity was observed at 333 K. High monomer pressures (≈ 4 atm) appeared to stabilize active species during polymerization, producing polyethylenes with high molecular weight (≈ 3 × 105 g mol−1). Catalyst concentration had no significant effect on polymerization activity or polymer properties. Catalyst aging under inert atmosphere was evaluated over 6 months; a pronounced reduction in catalyst activity [from 20 to 13 × 105 g PE (mol Zr h)−1] was observed only after the first two days following preparation. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1987–1996, 1999

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.