Abstract

Understanding phenomena occurring at the scale of the crystals during the deformation of semi-solid alloys is important for the development of physically-based rheological models. A range of deformation mechanisms have been proposed including agglomeration and disagglomeration, viscoplastic deformation of the solid skeleton, and granular phenomena such as jamming and dilatancy. This paper overviews in-situ experiments that directly image crystal-scale deformation mechanisms in equiaxed Al alloys at solid fractions shortly after the crystals have impinged to form a loose crystal network. Direct evidence is presented for granular deformation mechanisms including shear-induced dilation in both equiaxed-dendritic and globular microstructures. Modelling approaches suitable for capturing this behaviour are then discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.