Abstract

The analysis of low Z elements, like Na and Al at ultra trace levels (<10 10 atoms/cm 2) on Si wafer surfaces is required by the semiconductor industry. Synchrotron radiation induced total reflection X-ray fluorescence analysis (SR-TXRF) is a promising method to fulfill this task, if a special energy dispersive detector with an ultra thin window is used. Synchrotron radiation is the ideal excitation source for TXRF of low Z elements due to its intense, naturally collimated and linearly polarized radiation with a wide spectral range down to low energies even below 1 keV. TXRF offers some advantages for wafer surface analysis such as non-destructive analysis and mapping capabilities. Experiments have been performed at the Stanford Synchrotron Radiation Lab (SSRL) using Beamline 3-4 (BL 3-4), a bending magnet beamline using white (<3 keV) and monochromatic radiation, as well as Beamline 3-3 (BL 3-3), using a crystal monochromator as well as a multilayer monochromator. A comparison of excitation–detection geometry was performed, using a side-looking detector with a vertically positioned wafer as well as a down-looking detector with a horizontally arranged wafer. The advantages and disadvantages of the various geometrical and excitation conditions are presented and the results compared. Detection limits are in the 100-fg range for Na, as determined with droplet samples on Si wafer surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call