Abstract

BackgroundSynchrotron microbeam radiation therapy (MRT) is a new, evolving form of radiotherapy that has potential for clinical application. Several studies have shown in preclinical models that synchrotron MRT achieves equivalent tumor control to conventional radiotherapy (CRT) but with significantly reduced normal tissue damage. MethodsTo explore differences between these two modalities, we assessed the immune cell infiltrate into EMT6.5 mammary tumors after CRT and MRT. ResultsCRT induced marked increases in tumor-associated macrophages and neutrophils while there were no increases in these populations following MRT. In contrast, there were higher numbers of T cells in the MRT treated tumors. There were also increased levels of CCL2 by immunohistochemistry in tumors subjected to CRT, but not to MRT. Conversely, we found that MRT induced higher levels of pro-inflammatory genes in tumors than CRT. ConclusionOur data are the first to demonstrate substantial differences in macrophage, neutrophil and T cell numbers in tumors following MRT versus CRT, providing support for the concept that MRT evokes a different immunomodulatory response in tumors compared to CRT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.