Abstract
Synchrotron microbeam radiation therapy is a promising preclinical radiotherapy modality that has been proposed as an alternative to conventional radiation therapy for diseases such as diffuse intrinsic pontine glioma (DIPG), a devastating pediatric tumor of the brainstem. The primary goal of this study was to characterize and compare the radiosensitivity of two DIPG cell lines (SF7761 and JHH-DIPG-1) to microbeam and conventional radiation. We hypothesized that these DIPG cell lines would exhibit differential responses to each radiation modality. Single cell suspensions were exposed to microbeam (112, 250, 560, 1,180 Gy peak dose) or conventional (2, 4, 6 and 8 Gy) radiation to produce clonogenic cell-survival curves. Apoptosis induction and the cell cycle were also analyzed five days postirradiation using flow cytometry. JHH-DIPG-1 cells displayed greater radioresistance than SF7761 to both microbeam and conventional radiation, with higher colony formation and increased accumulation of G2/M-phase cells. Apoptosis was significantly increased in SF7761 cells compared to JHH-DIPG-1 after microbeam irradiation, demonstrating cell-line specific differential radiosensitivity to microbeam radiation. Additionally, biologically equivalent doses to microbeam and conventional radiation were calculated based on clonogenic survival, furthering our understanding of the response of cancer cells to these two radiotherapy modalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.