Abstract

The potentiality of synchrotron infrared microspectrometry was investigated for in situ analysis of fluid inclusions and volatiles of particular geological interest. Thanks to the intrinsic high brightness of the synchrotron infrared source, areas as small as a few μm2 can be probed, providing a high-contrast analysis of small inclusions in geological materials. We have identified organic components in such small volumes in their liquid and gaseous phase, thus allowing a deeper analysis of oil-water inclusions entrapped in diagenetic cements. Such detailed analysis opens up new perspectives in petroleum reservoir evolution studies. The high signal-to-noise ratio of spectra obtained in small volume allows a fast and accurate chemical mapping of the inclusion components. Drastic refraction effects preclude, at the present state, a quantitative analysis of either the volume or the thickness of the individual inclusions. Traces of volatiles such as CO2 and H2O are easily detected in the vitreous and gaseous part of the glass melt fluid inclusions. We have also profiled the hydroxyl concentration near a wall, and calculated the hydrogen diffusion coefficient in anhydrous minerals such as diopside.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.