Abstract

The synchronous behaviour of interacting communities is studied in this paper. Each community is described by a tritrophic food chain model, and the communities interact through a network with arbitrary topology, composed of patches and migration corridors. The analysis of the local synchronization properties (via the master stability function approach) shows that, if only one species can migrate, the dispersal of the consumer (i.e., the intermediate trophic level) is the most effective mechanism for promoting synchronization. When analysing the effects of the variations of demographic parameters, it is found that factors that stabilize the single community also tend to favour synchronization. Global synchronization is finally analysed by means of the connection graph method, yielding a lower bound on the value of the dispersion rate that guarantees the synchronization of the metacommunity for a given network topology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.