Abstract

In this paper, the temporal, spatial, and spatiotemporal patterns of a tritrophic food chain reaction–diffusion model with Holling type II functional response are studied. Firstly, for the model with or without diffusion, we perform a detailed stability and Hopf bifurcation analysis and derive criteria for determining the direction and stability of the bifurcation by the center manifold and normal form theory. Moreover, diffusion-driven Turing instability occurs, which induces spatial inhomogeneous patterns for the reaction–diffusion model. Then, the existence of positive non-constant steady-states of the reaction–diffusion model is established by the Leray–Schauder degree theory and some a priori estimates. Finally, numerical simulations are presented to visualize the complex dynamic behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.