Abstract

This paper proposes a novel thyroid examination technique based on five-dimensional (5D) synchronous reconstruction of ultrasound data. The raw temporal sequences are reconstructed into 3D volumetric data reflecting anatomical structure. Triplanar visualization from three orthogonal planes is realized to provide a systematic inspection of the entire gland. Color Doppler imaging is integrated into each triplanar slice to map vascularity changes. This multi-modal fusion enables synchronous display of structural, functional, and blood flow information in the reconstructed 5D space. Compared to conventional scanning, this technique offers the benefits of flexible offline diagnosis, reduced dependency on scanning, enhanced intuitive interpretation, and comprehensive multi-aspect evaluation. By minimizing oversight errors, it could improve diagnostic accuracy, especially for novice practitioners. The proposed 5D fusion method allows rapid and precise localization of lesions for early detection. Future work will explore integration with biochemical markers to further improve diagnostic precision. The technique has considerable clinical value for advancing thyroid examination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call