Abstract
The work presented here investigates the combination of Kleene algebra with the synchrony model of concurrency from Milner’s SCCS calculus. The resulting algebraic structure is called synchronous Kleene algebra. Models are given in terms of sets of synchronous strings and finite automata accepting synchronous strings. The extension of synchronous Kleene algebra with Boolean tests is presented together with models on sets of guarded synchronous strings and the associated automata on guarded synchronous strings. Completeness w.r.t. the standard interpretations is given for each of the two new formalisms. Decidability follows from completeness. Kleene algebra with synchrony should be included in the class of true concurrency models. In this direction, a comparison with Mazurkiewicz traces is made which yields their incomparability with synchronous Kleene algebras (one cannot simulate the other). On the other hand, we isolate a class of pomsets which captures exactly synchronous Kleene algebras. We present an application to Hoare-like reasoning about parallel programs in the style of synchrony.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.