Abstract

For a magnetically suspended control moment gyro (MSCMG), the mass imbalance of the high-speed magnetically suspended rotor (MSR) will induce a synchronous force, which is the main disturbance for the attitude control of satellites. In this work, an elimination method with an adaption to parameter variations in an amplifier model is presented. First, the MSR system with a hybrid magnetic bearing is modeled. Next, a generalized notch filter is utilized to identify the synchronous displacement, according to which a feedforward controller is designed to generate synchronous current so that the electromagnetic force can counteract the permanent magnetic force precisely. To keep the feedforward controller unaffected by the power amplifiers whose parameters vary with the temperature, another notch filter is adopted to obtain the synchronous coil current, and then two types of adaptive controllers, which can tune the synchronous feedforward controller adaptively, are proposed and compared. Finally, simulations and experiments are carried out to demonstrate the validness of the adaptive control methods in an MSCMG test rig. The proposed control strategy does not need an accurate MSR model, and the methods of adaption to parameter variations in the amplifier model are suitable for various applications according to the elimination precision and computational effort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.