Abstract

Altered and mineralised rocks at Peak Hill, are confined to a 300–500 m wide, north-south striking, steeply dipping, shear zone that is flanked by the Mingelo Volcanics along its western side, and Cotton Formation siltstones along its eastern side. This shear zone is defined by extensive zones of cataclasite and strongly foliated micaceous schists in marked contrast to the largely undeformed nature of the adjacent rocks. Advanced argillic assemblages (quartz-kaolinite-pyrite ± alunite ± illite) occur throughout the core of the Peak Hill deposit. Propylitic assemblages, including albite, quartz, interlayered chlorite-smectite, illite and ankerite, and a narrow discontinuous zone of argillic (quartz-illite-pyrite) alteration are developed in the Mingelo Volcanics along the western side of the deposit. Propylitic, argillic and advanced argillic assemblages are overprinted by an internally zoned phase of phyllosilicate alteration that grades inwards from a peripheral sericite-clay-chlorite assemblage, through phyllic assemblages (muscovite/illite-pyrite ± paragonite) to a pyrophyllite-pyrite ± diaspore ± andalusite altered core. Au-Cu mineralisation is hosted by barite-pyrite veins that cut the advanced argillic assemblage, but pre-date the phyllosilicate-dominated alteration. Native Au (lacking Ag), calaverite, Te-rich tennantite-tetrahedrite (goldfieldite), chalcopyrite, covellite and chalcocite occur in the barite-pyrite veins. No ore-bearing minerals were detected in any of the alteration assemblages. The total gold content of the Peak Hill deposit is currently 720 K ounces and this includes 100 K ounces of unmined reserves. Within the shear zone phyllosilicate minerals are developed in strain shadows and partly define the stretching lineation associated with dip-slip movement. The zonation within the phyllosilicate assemblages mimics the geometry of bends in the shear zone and minor internal structures. These textures indicate that the phyllosilicate alteration developed synchronous with movement on the shear zone. Earlier advanced argillic alteration and mineralisation are developed in rocks derived from both sides of the shear zone. Hydrothermal activity associated with the earlier advanced argillic alteration was therefore either synchronous with juxtaposition of these distinct rock units, or occurred during a later phase of movement on the shear zone. Cross-cutting fibrous textures in the auriferous barite-pyrite veins indicate that repeated fracturing of the advanced argillic altered rocks accompanied development of successive generations of auriferous veins. Concentrations of auriferous veins are localised in steeply plunging shoots that are oriented parallel to the stretching lineation in the shear zone. These features all indicate movement on the host shear zone accompanied each phase of hydrothermal activity in the Peak Hill deposit. The location, alteration zonation and distribution of mineralised veins within the deposit are intimately controlled by deformation on the host shear zone synchronous with hydrothermal activity. The development of high-sulphidation hydrothermal systems synchronous with deformation along brittle-ductile shear zones is a predictable consequence of intrusive activity during deformation in areas characterised by a high geothermal gradient. The close relationship between tectonism and hydrothermal activity indicates that these deposits are likely to be located in the vicinity of regional-scale shear zones. Deposits are likely to be aligned parallel to the regional-scale structural “grain” and restricted to areas of conspicuous deformation as is the case at Peak Hill (and Temora, NSW). Aluminous alteration zones concentrated in the vicinity of regional-scale structures in the Carolina Slate Belt may be a further example of this style of hydrothermal activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.