Abstract

Gold mineralisation at the Dobroyde prospect in central New South Wales is hosted by a zoned alteration system characterised by peripheral propylitic alteration, grading inwards through argillic and advanced argillic alteration to a siliceous altered core. Overprinting textures indicate that propylitic, argillic, advanced argillic and siliceous assemblages were successively superimposed on each other. Au grades between 0.3–0.8 ppm are associated with siliceous alteration and cross‐cutting pyrite veinlets. Higher Au grades are associated with barite veins that cut the pyrite veinlets. Native Au, native Te, Au, Pb and Hg tellurides, Pb selenide, chalcopyrite, Zn‐sphalerite and tennantite‐tetrahedrite occur in the barite veins. Microscopic pyrophyllite shears cut the barite veins. The location of the Dobroyde prospect, the orientation of its internal alteration zonation and the orientation of auriferous barite veins in the core of the prospect are controlled by a 330°‐striking fault. Movement on this fault, synchronous with hydrothermal activity, at some time between the Late Ordovician and mid‐Devonian controlled the development of successive phases of brecciation, siliceous alteration, pyrite and later barite‐Au veining in the prospect core. The restricted distribution of auriferous barite veins within the siliceous altered core of the prospect is inferred to be controlled by the relatively brittle rheology of this assemblage during deformation, and its location on the fault that formed the main hydrothermal fluid conduit. Alteration zones distal from this fault remain unmineralised. The Dobroyde prospect may be a product of the same Early Devonian metallogenic epoch as the paragenetically similar Temora and Peak Hill deposits. All three deposits/prospects appear to be localised in splays of either the Gilmore Fault Zone or the Parkes Thrust.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call