Abstract

Intra-operative investigation of the subthalamic nucleus (STN) requires concurrent measurement of microelectrode voltage, electrode depth and joint movement during deep brain stimulation (DBS) surgery. Commercial solutions to this problem exist but are more expensive. Multiple instruments from different manufacturers can collect the same data, but data from incompatible instruments are collected on disparate clocks, precluding quantitative analysis. A pseudo-random binary signal recorded simultaneously by each set of instruments allows for chronological reconciliation. A custom program collects microelectrode data while simultaneously sending a pseudo-random binary signal to instruments measuring joint movement. The record of this signal is later used to express microelectrode voltage and joint position in a single chronological frame of reference. ClockSynch was used in 15 DBS procedures. After each surgery, records of microelectrode and joint movement were successfully chronologically reconciled. In conclusion, a pseudo-random binary signal integrates disparate systems of instrumentation at a significantly decreased cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.