Abstract

It is widely accepted that patients with Parkinson's disease experience immediate but temporary improvement in motor signs after surgical implantation of subthalamic nucleus (STN) deep brain stimulating electrodes before the electrodes are activated, although this has never been formally studied. Based on anecdotal observations that limb mobility improved just after microelectrode recording (MER) during deep brain stimulation (DBS) procedures, we designed a prospective study to measure upper extremity bradykinesia using a quantitative measure of angular velocity. Measurements were made pre- and post-MER and during intraoperative DBS. Analysis of 98 STN DBS procedures performed on 61 patients showed that MER did not create adverse clinical symptoms despite concerns that MER increases morbidity. Quantitative upper extremity bradykinesia improved after MER alone, and further improvement was seen during intraoperative DBS. Electrophysiological data from each case were then compared to the improvement in bradykinesia post-MER alone and a significant correlation was found between the improvement in arm bradykinesia, the number of passes through the STN with somatosensory driving, and also with the number of arm cells with somatosensory driving in the STN, but not with total number of passes, total number of passes through the STN, or total number of cells with somatosensory driving in the STN. This study demonstrates that there is a significant improvement in upper extremity bradykinesia just after MER, before inserting or activating the DBS electrode in patients with Parkinson's disease who undergo STN DBS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call