Abstract

The largest airports have a daily average throughput of more than 500 passengers with reduced mobility. The problem of transporting these passengers is in some cases a multi-modal transportation problem with synchronization constraints. A description of the problem together with a mathematical model is presented. The objective is to schedule as many of the passengers as possible, while ensuring a smooth transport with short waiting times. A simulated annealing based heuristic for solving the problem is presented. The algorithm makes use of an abstract representation of a candidate solution which in each step is transformed to an actual schedule by use of a greedy heuristic. Local search is performed on the abstract representation using advanced neighborhoods which modify large parts of the candidate solution. Computational results show that the algorithm is able to find good solutions within a couple of minutes, making the algorithm applicable for dynamic scheduling. Moreover high-quality solutions can be obtained by running the algorithm for 10minutes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.