Abstract

The aim of this study was to assess the inter-limb symmetry during gait in post-stroke patients using the synchronized cyclograms technique. In total, 41 individuals with stroke (21 left and 20 right hemiplegic patients; age: 57.9 ± 12.8 years; time stroke event 4.6 ± 1.8 years) and 48 age-, sex-, and height-matched individuals (control group: CG; age: 54.4 ± 12.5 years) were assessed via 3D gait analysis. Raw kinematic data were processed to compute spatio-temporal parameters (speed, stride length, cadence, stance, swing, and double support phases duration) and angle–angle diagrams (synchronized cyclograms), which were characterized in terms of area, orientation, and trend symmetry indices. The results reveal that all spatio-temporal parameters are characterized by abnormal values, with reduced speed, stride length, cadence, and swing phase duration and increased stance and double support phases duration. With respect to inter-limb symmetry, higher values were found in post-stroke individuals for all the considered parameters as patients generally exhibited a cyclogram characterized by larger areas, higher orientation, and trend symmetry parameters with respect to CG. The described alterations of gait asymmetry are important from a clinical point of view as the achievement of symmetry in gait represents a crucial objective in the rehabilitation of hemiplegic people.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.