Abstract
SummaryThis paper investigates the synchronization of reaction‐diffusion neural networks (RDNNs) with distributed delay via quantized boundary control. To reduce the communication burden, a novel control strategy combined boundary control and logarithmic quantizer is proposed, and two controllers respectively subject to constant and adaptive coefficients are carried out. Worth mentioning that the adaptive feedback gain is a matrix in this paper rather than a one‐dimensional variable in most of the existing literatures. Using the Lyapunov functional, the sufficient conditions for delay‐dependent synchronization are obtained through linear matrix inequalities. The effectiveness of the proposed control strategy is illustrated via two examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Adaptive Control and Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.