Abstract
ABSTRACTThis study tackles the problem of fault‐tolerant attitude estimation for small satellites. A probabilistic adaptive technique is presented for the multiplicative extended Kalman filter (MEKF) algorithm that is used in attitude estimation. The presented method is based on tracking the normalized measurement innovations in the filter and calculating the probability of the normal operation of the estimation system. Using this probability, the filter gain is corrected to maintain the tracking performance of the filter despite faulty measurements. In order to evaluate the performance of this method, several simulations are performed where different types of faults are introduced to the synthetic attitude sensor measurements (magnetometer and sun sensor) at different times. Simulation results are compared not only with a conventional EKF but also with another popular adaptive Kalman filter, an adaptive Kalman filter with multiple scaling factors (MSFs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Adaptive Control and Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.