Abstract

In this paper, we study the synchronization of identical nonlinear systems over large-scale network with uncertainty in the interconnections. We consider a special class of nonlinear systems which have a dissipative nonlinearity and the stability of such systems can be analyzed using absolute stability theory tools like the Positive Real Lemma, Bounded Real Lemma and dissipativity theory. We extend this analysis to the stochastic setting over a network where the interconnection weights are drive by Wiener process with given mean and variance. To capture the stability of the synchronized state, we study the notion of mean square stability from stochastic stability theory and formulate a network size-independent sufficient condition based on the theory of stochastic dissipative systems. We also compute a heuristic margin of synchronization for the networked systems to indicate the tolerance to stochastic uncertainty in interconnection links.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.