Abstract
A brief survey of control and synchronization under information constraints (limited information capacity of the coupling channel) is given. Limit possibilities of nonlinear observer-based synchronization systems with first-order coders or full-order coders are considered in more detail. The existing and new theoretical results for multidimensional drive-response Lurie systems (linear part plus nonlinearity depending only on measurable outputs) are presented. It is shown that the upper bound of the limit synchronization error (LSE) is proportional to the upper bound of the transmission error. As a consequence, the upper and lower bounds of LSE are proportional to the maximum coupling signal rate and inversely proportional to the information transmission rate (channel capacity). The analysis is extended to networks having a “chain,” “star,” or “star-chain” topology. Adaptive chaotic synchronization under information constraints is analyzed. The results are illustrated by example: master-slave synchronization of two chaotic Chua systems coupled via a channel with limited capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.